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HPC has been pretty successful...
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Old Wisdom:
Moore’s Law = free exponential speedups!
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Intel: Moore's Law will
Intel is about to save $1 billion by failing to keep up with continue through 7nm chips
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Reality: Computing improvements have slowed
dramatically over the past Decade

Transistors you can buy for a fixed #

of dollars in leading technology is no Without Intel CPUs
longer increasing!

Single core vs all cores comparison
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Sockets and Cores Growing

o : Single thread performance

e improvement is slow. (Specint)
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*”Intel has done a little better over this period,

Increasing at 21% per year.
*”No Moore?”, Economist, Nov 2013. g °pery

- Courtesy: Andrew Chien
Src: Linley Group Pete Beckman  Argonne National Laboratory / Northwestern University



Intel to Acquire FPGA-Specialist Altera for $16.7 20

Billion Comments
by Ryan Smith on June 1, 2015 6:05 PM EST + Add A
Comment

Posted in CPUs FPGA Intel Altera Xeon

-

Today Intel has announced that they are buying Altera in an all-cash deal of $16.7 billion. The deal, having
been rumored for a while now, will see Intel pick up Altera for their Field Programmable Grid Array (FPGA)
experience, with Intel intending to both continue FPGA development and integrate FPGAs into some of their

¢ future products. 5



Old Wisdom:

Efficient Algorithms minimize operations

Classic Analysis of Algorithms: Ops = Time

Make algorithm quicker: minimize flops, compares

Ops: Best, Worst, Average, Space

1.4.5 Thinking About Data Motion

Another important attribute of a matrix algorithm coacerns the actual vol-
ume of data that has to be moved around during execution. Matrices sit
in memory but the computations that involve their entries take place in
functional units. The control of memory traffic is crucial to performance
in many computers. To continue with the factory metapbor used at the
beginning of this section: Can we keep the superfast arithmetic units busy
with enough deliveries of matriz data ond can we ship the resuils back to
memory fast enough to avoid backlog? F1G.1.4.3 depicts the typical situs-
tion in an advanced uniprocessor environment. Details vary from machine
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Fic. 1.4.3 Memory Hierarchy

but two “axioms;; prevail:

level in the hierarchy has a Emited capacity and for economic
this capacity is usually smaller as we ascend the hierarchy.

is a cost, sometimes relatively great, associsted with the moving
data between two levels in the hierarchy.
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The design of an efficient matrix algorithm requires careful thinking about
the flow of data in between the various levels of storage. 'I'bethottouch
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Reality:
Efficient = optimize data movement (and power)

We’ve Hit a Power Ceiling
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Old Wisdom:
Parallel Algorithms: Equal Work = Equal Time

(computers run at predictable speeds)

SPMD Code: Divide data into equal sized chucks across p processors

For all timesteps {
exchange data with neighbors

compute on local data
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We live with dynamic now...
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Reality: Performance is Highly Variable

Memory Hierarchy Depth
(1-150-?)

Ranger Local and Remote Latency
single-stream pointer-chasing, 128 byte stride
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The New Exascale Reality

. C : il c L el fort
— Rapid exponential improvement is over, slow improvement will
continue for awhile... Parallelism explodes, SQUEEEEZE!

. .

— More operations can better, optimize for locality, data movement,
power

" CompUterstrur-at-fxed-predictable-speed——

— Increasing dynamic and flexible, complication and advantage
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What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

" |Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

12
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What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

As we scale machine, system becomes more dynamic

As we squeeze power, system becomes more dynamic
As we address resilience, system becomes more dynamic
As we share networks, system becomes more dynamic
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R
Our Hardware is Dynamic, Adaptive Today! A NE

(the future is even more dynamic)

Bulk Synchronous is our scaling problem

* #MPI (library that moves data with put/get or send/recv)
e We must focus on dynamic behavior

“0OS Noise” and “jitter” is a legacy distraction

* OS & Runtime must be VERY active...

Load balancing is necessary, but not sufficient...

- e How do we design software in this new era?
lﬁ/'_\ * How do we build latency tolerant algs?

/ \  Can we create tools that measure, learn,

{IX 3 predict, and then improve performance?
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But yet, We Pretend our World is Not
Dynamic

= Trinity/NERSC-

“The system shall provide and consistent runtimes. An application’s
runtime (i.e. wall clock time) shall not change by more than 3% from run-to-
run in dedicated mode and 5% in production mode.“

2 % Top Ten Exascale
i (7 ] Research Challenges

ASCAC Top 10 Research Challenges for Exascale

*“[...] power management [..] through dynamic adjustment of
system balance to fit within a fixed power budget”

*[...] Enabling [...] dynamic optimizations [...] (power, performance,
and reliability) will be crucial to scientific productivity. “

*“[...] Next-generation runtime systems are under development
that support different mixes of several classes of dynamic
adaptive functionality. “

“dynamic” mentioned 43 times in 86 pg report

Q Pete Beckman Argonne National Laboratory / Northwestern University

15



Lessons for the Future

= Code should be as static as possible, but no more so

= 1) Prepare: Create flexibility via over-decomposition, clear expression of
dependencies

= 2) Take small steps to becoming more pliable.... statically
— (static) mapping of resource (slow/fast; heat)
— (static) load balancing (periodic repartitioning)
— (static) dependency graph tiling of stencils to match communication

= 3) Find goal-oriented optimization
— Dynamic lightweight work-sharing
— Dynamic power management

— Dynamic data movement across hierarchy
Code should not consider dynamic a performance error
(e.g. NERSC)

Pete Beckman Argonne National Laboratory / Northwestern University
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Argobots

= Lightweight Low-level Threading/
Tasking Framework

= Separation of abstraction and
mapping to implementation
= Massive parallelism
— Exec. Streams guarantee progress
— Work Units execute to completion

= (Clearly defined memory semantics
— Consistency domains
* Provide Eventual Consistency
— Software can manage consistency

— Work Units can access any
consistency domain

— Support explicit memory placement
and movement
= Put/Get/Send/Recv requires library
call in OSR, but could be transparent
at application level

= Exploring fault model and atomics

Work
Unit
Execution

Stream
Execution Model
CD1 CD1 CD1
CDO

i

O
Cache-Coherent
Memory

Non-Coherent

Memory
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Threading-aware Task Schedulers

Task Schedulers+Argobots

= Task scheduling built on tasklets and user-level
threads in argobots

= Focus on two classes of task graphs
— Fork-join computations
— Compact DAG representations
= Exploit the scheduling characteristics of argobots

— Control over mapping threads to cores
— Control over scheduling

— Split-phase communication and task scheduling
= |nitial Implementation

— Argobots-optimized Cilk scheduler

— Parallel Task Graph Engine (PTGE)

©
O
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THE WALL STREET JOURNAL Q
Intel, Micron Claim Chip

Breakthrough

Companies say new memory chips are up to 1,000 times faster
than NAND chips

Our Future is Memory Hierarchy
(adding dynamic behavior)
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Conclusions: The Times They are A-Changin’

= Embrace DYNAMIC!
— Work # Time

= Optimize algorithms for data movement
= |Imagine multiple memory allocators

— Manual data movement
= Learn to love runtime systems

= Explore adaptive, learning, predictive
software stacks that takes humans out of
the loop...

— Sorry humans, you are too slow.
— Reject human tuning papers...
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Questions?
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